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I. INTRODUCTION

This paper addresses the subject of the relation between the predictions
of economic theory and bidder behavior in the Dutch auction, the English
auction, the first-price sealed-bid auction, and the second-price sealed-
bid auction of a single item. The four types of auction market are defined
as follows.

1. Dutch: In this auction the offer price starts at an amount believed
to be higher than any bidder is willing to pay and is lowered by
an auctioneer or a clock device until one of the bidders accepts
the last price offer (Cassady, 1967, p. 67). The first and only bid
is the sales price in the Dutch auction.
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(2]

English: This is the **. . . progressive auction, in which bids are
freely made and announced until no purchaser wishes to make any
further higher bid”” (Vickrey, 1961, p. 14). The last bid is the sales
price in the English auction.

3. First-price: This auction corresponds to ‘. . . the usual practice
of calling for the tender of bids on the understanding that the
highest . . . bid . . . will be accepted and executed in accordance
with its own terms’’ (Vickrey, 1961, p. 20). In the first-price auc-
tion, the auctioned object is awarded to the highest bidder at a
(sales) price equal to his bid.

4. Second-price: Under this auction procedure, bids are tendered on

the understanding that the item will be awarded to the highest

bidder, but at a price equal to the second highest bid (Vickrey,

1961, pp. 20-21). Cassady’s (1967, pp. 152-153) description of

how ‘“‘book bids’’ are handled in the London stamp auction cor-

responds to the second-price auction.'

I3

The Dutch and English auctions are commonly referred to as “‘oral”
auctions, as distinct from the “‘written-bid’” (i.e., sealed-bid) auctions.
In fact, the feature that distinguishes the Dutch and English auctions
from the sealed-bid auctions is the ‘‘real-time’” element of the former
auctions, not that bids are actually made orally. Thus, during the conduct
of the Dutch and English auctions a bidder is able to observe some
bidding behavior of his rivals. In the absence of collusion in a sealed-bid
auction, a bidder is not able to make any observations of his rivals’
bidding behavior.

In developing the economic theory of these four auction markets, we
will be concerned with the implications of the expected utility hypothesis
and the Nash equilibrium condition. The theory and the experimental
design in this paper apply to the case where each bidder knows with
certainty the monetary value that he places on the auctioned object but
does not know the values that his rivals place on the auctioned object.

II. IMPLICATIONS OF THE EXPECTED UTILITY
HYPOTHESIS

We understand the expected utility hypothesis to be the assumption that
a bidder chooses his bid as if his objective were to maximize his expected
(von Neuman-Morgenstern) utility of the money income gained from
participating in an auction. In the present section of the paper, we explore
the implications of the expected utility hypothesis for bidding behavior.

Define N as the number of bidders participating in the auction. Let
the strictly increasing concave function u;, i = 1, 2, ..., N, be the
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utility function for money income for the ith bidder. Adopt the normal-
ization that u;(0) equals 0 for all i and that the utility of not bidding
equals 0 for all bidders. Further assume that there is no utility or disutility
associated with participating in the auction other than the utility of the
monetary gain from the auction. The monetary value to bidder i of the
auctioned object is denoted by v;. Assume that v; is known with certainty
by bidder i and that v; is positive for each i. The bid of the ith bidder
is denoted by b; and the auction market rules require b; to be nonnegative.
Now consider the first-price sealed-bid auction. If the ith bidder sub-
mits the highest bid, then he obtains the money income (v; — b;). If he
does not submit the highest bid, then his monetary gain from participating
in the auction is zero. Let Fi(b;) be the ith bidder’s subjective probability
that he can win the auction with a bid in the amount b;. Thus the expected
utility to bidder i of a bid in the amount b; in the first-price auction is

Ui(b) = Fib)ui(v; — by. 2.1

Assume now, for simplicity, that the amount bid is a continuous vari-

able and that the interval [X;, X;] is the support of the probability dis-
tribution function F;. Further assume that the expected utility function
(2.1) 1s pseudoconcave and that there exists a unique positive expected
utility-maximizing bid b{. Then b} will satisfy the following first-order
condition:

0 = U/(bY) = Fibduv; — b)) ~ EGui(v; — b)), (2.2)
Also assume that b satisfies the second-order condition for a maximum,
0> Ui(bY) = Fi(b)ui(vi — bp)

— 2F{(b)ui(vi — b)) (2.3)
+ FibMui(v; — b)).

If U/t-) is negative on an interval subset of the domain of Ui(:), then
statements (2.2) and (2.3) and the implicit function theorem imply that
there exists a differentiable function U5 such that

b = di(vy) (2.4)
= Vi — Ui_](Ui'(Vi ~ b) Fy(b?)/F{(b?))

and
Witv)) = [Fib)ui(v; — bY) — F(b)ui(vi — b)I/U(bY), (2.5)

where u;"' is the inverse of the utility of money income function. The

function ¥ is called the ith bidder’s strategy function or his bid function.
The implications of the expected utility hypothesis for bidding behavior
in the first-price sealed-bid auction follow immediately from statement
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(2.4). First, the expected utility-maximizing bid is less than the value of
the auctioned object. Therefore, the first-price sealed-bid auction is not
a demand-revealing allocation mechanism. Secondly, the amount by
which the object value exceeds the optimal bid depends on u; and F;;
that is, it depends on the bidder’s risk preferences and expectations
about his rivals’ bids. Since risk preferences and expectations can differ
over individual bidders, the highest bid will not necessarily be submitted
by the bidder who places the highest value on the auctioned object. Thus
the first-price auction does not, in general, yield Pareto-efficient allo-
cations. However, we can identify a set of conditions under which this
auction would yield efficient allocations. Concavity and monotonicity of
u; and statements (2.2), (2.3), and (2.5) imply that the bid function j is
increasing. If we now assume that all N bidders have the same risk
preferences and expectations about their rivals’ bids, then they will all
have the same increasing bid function. In that special case, the first-price
sealed-bid auction will yield Pareto-efficient allocations. However, if all
bidders are not identical, then the conclusion that the first-price auction
is efficient has been shown by the discussion in this paragraph to be
untenable. We will consider this point again in Section III below.

Consider next the second-price sealed-bid auction. In that auction the
highest bid is the winning bid but the price paid for the auctioned object
by the winning bidder is the amount of the second highest bid. In the
absence of perfect collusion among the bidders, an individual bidder will
not know with certainty the bids of his rivals before he must decide on
the amount of his own bid. Thus let the random variable y be the highest
bid of any of the rivals of a particular bidder i. Let the ith bidder’s
expectations about y be represented by the cumulative distribution func-
tion G;, with support [Y;, Y;]. If the ith bidder submits the highest bid,
then he obtains the money income (v; — y). If he does not submit the
highest bid, then his monetary gain from participating in the auction is
zero. Thus the expected utility to bidder i of a bid in the amount b; €
[Y,, Y;] in the second-price auction is

b
Vi(b) = I.Ui(vi — y) dGi(y). (2.6)

_}:a

Consider the interesting case where v; € [Y;, Y] and, for simplicity,
assume that the expected utility-maximizing bid of bidder i, b¥, satisfies
the following first-order condition:

0 = Vi(bj) = ul(v; — b#)G{(b). 2.7)
Statement (2.7) and the normalization u(0) = 0 imply

b = v;. (2.8)
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Thus the bidder’s strategy function in the second-price auction is the
identity map.

The implications of the expected utility hypothesis for bidding behavior
in the second-price sealed-bid auction follow immediately from statement
(2.8). The expected utility-maximizing bid is equal to the value of the
auctioned object. Furthermore, it does not depend on the bidder’s risk
preferences or his expectations about his rivals’ bids. Therefore, the
outcome where each of the N bidders submits a bid equal to his object
value is a dominant strategy equilibrium in the second-price auction.
Thus the second-price auction is a demand-revealing allocation mecha-
nism that will, in general, yield Pareto-efficient allocations. Furthermore,
the winning bid will equal the largest of the values v;, and the sales price
will equal the second highest of those values.

An additional question of interest for comparison of alternative auction
markets is the effect of auction market structure on the distribution of
seller’s revenue. The question is often posed in terms of a comparison
across auction markets of the first two moments of the probability dis-
tribution of seller’s revenue. Thus it is a matter of some interest whether
one auction can be shown to yield a higher expected revenue and/or a
lower revenue variance than another. The preceding analysis informs us
that, for a given set of individual object values, each bidder will bid
lower in the first-price auction than in the second-price auction where
his bid equals his value. But this does not permit a comparison of the
expected sales prices in the two auctions. An attempt to make such a
comparison would involve comparison of the second highest object value
with a bid that is less than the highest object value. No such comparison
can be made without a stronger set of assumptions than we now have.
We will return to this question in Section III below.

The expected utility hypothesis does have testable implications for the
mean sales price and the variance of sales prices in the second-price
auction because it implies that the bidding strategy function for that
auction is the identity map (2.8). Thus the predicted sales price for that
auction is the second highest of the individual object values. If each
individual object value is drawn independently from a known distribution,
then the implied probability distribution of the sale price is that for the
(N — I)th-order statistic for a random sample of size N from that
distribution.

The experimental design which we explain in Section IV incorporates
the feature that each individual object value is drawn from the uniform
distribution on the interval [v, v]. The probability distribution function
for the (N — I)th-order statistic for a random sample of size N from
that distribution is

F(p) = Nl(p — v/E — "= (N = Di(p - IV - Y. (2.9
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Thus the predicted mean p, and variance V, of the sales price are:

P = f pdF(p) = S =Y -Nl)ivl— Dy, (2.10)

2AN— DV — v)*
(N + DAN + 2)

vV, = f (p — P2)* dF(p) = (2.11)
Now consider the Dutch auction and let t denote the length of time

the auction has been in progress. The bid ‘‘on the clock’ at time t is

b(t). Since the Dutch auction is a decreasing price auction, we have

b(t,) > b(ty), for all t,, t, such that t; < t,. 2.12)

Let Hi(b(t)) be the ith bidder’s subjective probability at the beginning
of the auction (t = 0) that he can win the auctioned object by accepting
the bid b(t). If the ith bidder accepts the bid b(t), he gains the money
income v; — b(t). The utility of that income is ui(v; — b(t)). Thus the
expected utility at the beginning of the auction of planning to accept the
bid b(t) is

Wib(t)) = Hi(b(®)ui(vi — b(t)). (2.13)

Therefore, an optimal bidding plan for the ith bidder in the Dutch auction
will be to plan to accept the bid b(t7) that maximizes (2.13).

The immediately preceding planning model of bidder behavior in the
Dutch auction ignores the fact that that auction is a ‘‘real-time’’ auction
in which bidders can make their decisions over time. However, given
the standard behavioral assumptions that we are now using, a real-time
model of bidder behavior can be shown to lead to the same conclusions
about bidding in the Dutch auction as does the preceding planning model.
But in order to prepare for the analysis in Section VIII that involves a
real-time model of Dutch auction bidder behavior that incorporates some
nonstandard behavioral assumptions, we now develop a real-time model
with standard behavioral assumptions.

Suppose that the auction is in progress at time t and bidder i must
decide whether to accept the bid b(t) or let the auction continue. If he
accepts the bid b(t), he gains the money income v; — b(t) with utility
ui(v; — b(1)). If he does not accept b(t), he has a chance to obtain the
auctioned object at a lower price. Suppose that the bidder does not
accept b(t) but rather lets the auction continue for one more tick of the
auction clock to time t + At, where At > 0. Let Hib(t + At)[b(t)) be
the ith bidder’s probability that he can win the auction by accepting the
bid b(t + At), given the observation that the auction is still in progress
at time t [and thus that he could have won the auction by accepting the
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bid b(t)]. Then the expected utility at time t of planning to accept the
bid b(t + At) is Hi(b(t + At)[b(t)ui(v; — bt + At)). Thus the change
in expected utility at time t from not accepting b(t) and planning to accept
b(t + At) is

AY;(t) = Hy(b(t + At)|b(t))ui(vi — b(t + At)) — ui(v; — b(t)). (2.14)
With At > 0, we have Hi(b(t)|b(t + At)) = I; therefore, Bayes’ rule and
(2.14) imply

AY (1) = Wum ~ b(t + AD) — u(v, — b(t). (2.15)

We will now proceed, as in our analysis of the first-price auction, to
assume differentiability of the objective function. Thus, using (2.15), we

find
Y/(t) = lim (AY‘“)>

a0t At
= {[uy(v; — bO)H{(b)/Hi(b(1))] — ui(v; — b))} b'(V).
Assume that the auction begins at t = 0 and ends at t = T. Thus if the

optimal time for bidder i to stop the auction is some t7 such that
t> €(0. T) then t© will satisfy the following first-order condition.

(2.16)

0 =Yt (2.17)
= {lui(vi = BI)HI(bEN))/H (b)) — ui(v; — b))} b'(t7).

Note that (2.17) implies the first-order condition for maximization of
(2.13) on (0, T) since b'(t)) < 0. Therefore, the two models of bidder
behavior in the Dutch auction imply the same bidding behavior: accept
the bid b(t)") that maximizes (2.13).

We now proceed, as in the preceding analysis of the first-price auction,
to assume that the bid b(ty) satisfies the first- and second-order conditions
for a maxmium of (2.13). Also assume that [Z;, Z;] is the support of the
probability distribution function H; and that the expected utility function,
(2.13), is pseudoconcave. Then the preceding analysis of the first-price
sealed bid auction can be interpreted so as to apply to the Dutch auction.
Simply replace F; with H; and U; with W, in the appropriate equations
and then the preceding analysis of the first-price auction yields the fol-
lowing conclusions for the Dutch auction. A bidder’s expected utility-
maximizing bid is less than the value to him of the auctioned object.
Thus the Dutch auction is not a demand-revealing allocation mechanism.
Furthermore, the amount by which the bidder’s object value exceeds his
optimal bid depends on his risk preferences and his expectations about
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his rivals’ bids. Thus the Dutch auction will not generally yield Pareto-
efficient allocations.

A further result of interest can be simply derived as follows. Suppose
that the ith bidder believed that each of his rivals would employ the
same bidding strategy in the Dutch auction as he did in the first-price
auction. Then F; and H; would be identical and the ith bidder would be
led by expected utility maximization to employ the same bidding strategy
in the Dutch auction that he did in the first-price auction. Thus if every
bidder believed that each of his rivals would employ the same bid function
in the Dutch auction that he did in the first-price auction, then every
bidder would find it in his interest to do the same. In that case the Dutch
and first-price auctions would have identical quantitative characteristics
as well as the common qualitative characteristics discussed above. It is
in this sense that the Dutch and first-price auctions are isomorphic.

Now consider the English auction. An individual bidder will obtain
a positive income from participating in the auction if and only if he can
win the auction with a bid that is less than his value for the auctioned
object. Thus a utility-maximizing bidder will drop out of the bidding only
when the bid “‘on the floor’” equals or exceeds his value for the object.
Therefore, the strategy of remaining in the bidding competition as long
as the bid on the floor does not exceed the bidder’s value for the object,
and of dropping out as soon as it does exceed that value, is a dominant
strategy. Thus the English auction is a demand-revealing allocation mech-
anism that will, in general, yield Pareto-efficient allocations. Further-
more, the sales price for the auctioned object will equal the second
highest of the bidders’ object values plus, perhaps, a minimum bid in-
crement. The similarity of the predicted allocations of the English auction
and the second-price sealed-bid auction is the reason why those auctions
are said to be isomorphic.

III. IMPLICATIONS OF THE EXPECTED UTILITY
HYPOTHESIS AND THE NASH EQUILIBRIUM
CONDITION

The preceding analysis has explored the implications of the expected
utility hypothesis for bidder behavior. We now add to that hypothesis
the additional assumption that the bidders’ strategy functions satisfy a
Nash equilibrium condition. That condition can be explained as follows.
Let S; be the strategy function of the ith bidder where, as above, i =
1, 2, ..., N. Now suppose bidder j knows that all bidders i # j bid in
accordance with these strategy functions and that, given this information,
individual j can find no way of changing his own strategy function S; so
as to increase his expected utility. If this condition holds for j = 1, 2,
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.. ., N, then the strategy functions S;,j = 1,2, .. ., N, satisfy tne Nash
equilibrium condition.

In Section II we found that the second-price sealed-bid and English
auctions have dominant strategy equilibrium bid functions. All dominant
strategy functions satisfy the Nash equilibrium condition. Therefore, our
assumption here of the Nash equilibrium condition is redundant for the
second-price and English auctions; it has no testable implications for
bidding behavior in those auctions. In contrast, the first-price sealed-bid
and Dutch auctions do not have dominant strategy equilibria. Thus, our
assumption here of the Nash equilibrium condition does have testable
implications for bidding behavior in those auctions.

Consider the strategy functions ¥;, 1 = 1, 2, . . ., N, for the first-price
auction derived in Section II above. As in statement (2.4), these functions
relate the expected utility-maximizing bids b} to the object values v;.
Now suppose that we can define vectors 6;, i = 1, 2, ..., N, that
represent all individual bidder characteristics that affect the utility of
money income. Thus, if uy) is the utility of money income y to bidder
i, then we can define the utility function u as follows:

ui(y) = u(Y7 ei)’ l = 1’2’ Loe ey N (3'1)

Suppose that bidder i knows his own characteristic vector 6; but does
not know the characteristic vectors of his rivals. Further assume that
bidder i believes that the characteristic vectors of his rivals are drawn
independently from a known probability distribution. Finally, assume
that these assumptions hold for every bidder. Then one can attempt to
derive a bidding strategy function ¥, such that

Ui(v) = U(v, 8), i=1,2,... N, (3.2)

where  maximizes the expected utility of every bidder in the first-price
auction. Such a function, if it exists, will satisfy the Nash equilibrium
condition and is referred to as an equilibrium strategy function and as
a Nash equilibrium bid function.

Finding equilibrium strategy functions for auctions (such as the first-
price sealed-bid auction) which do not have a dominant strategy equi-
librium is a considerably more ambitious undertaking than is the expected
utility maximization in Section II. In order to make it tractable, authors
of papers on bidding theory have assumed that all bidders have the same
risk preferences; that is, they have assumed that 6; = 6, i = 1, 2,
.. .. N. In the seminal paper on equilibrium bidding theory by William
Vickrey (1961), all bidders are assumed to be risk-neutral. Vickrey further
assumes that each individual’s value for the auctioned object is drawn
from the uniform distribution on the interval, [0, 1]. Finally each indi-
vidual is assumed to know his own value for the auctioned object but
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to know only the distribution from which his rivals’ values are drawn.
Using these assumptions, and letting the number of bidders be denoted
by N, Vickrey shows that the noncooperative equilibrium bid function
for the first-price auction is

N -1

b, = NV 1=12,...,N. (3.3)

An immediate generalization of Vickrey’s analysis is provided by al-
lowing values to be drawn from a uniform distribution on any nonempty
interval, [v, V], such that v = 0. In that case, the equilibrium bid function
1S

N -1
N

bi=v + (vi—v),i=1,2,..., N. (3.4)

Finally, we want to note the following about the Vickrey model. Given

that the highest possible value drawing is V, the highest bid that satisfies

(3.4) is

N -1
N

b=v+ v = ). (3.5)

The assumption that all bidders are risk-neutral, or alternatively that
they all have the same strictly concave utility function, is very restrictive.
In the present paper we build on suggestions by John Ledyard to con-
struct an equilibrium bidding model (which we will call the “‘Ledyard
model’’) that permits individual bidders to differ in their attitudes towards
risk. We begin by assuming that each bidder is drawn from a population
of economic agents with utility of money income functions of the form

uly) = y", (3.6)
where 1; is a random variable with probability distribution @ on [0, 1].
Note that (1 — rj) i1s the Arrow-Pratt constant relative risk aversion

parameter for utility function (3.6).> Each bidder is assumed to know his
own risk aversion parameter r;, but to know only that the risk aversion
parameter for each of his rivals is drawn from the probability distribution
®. Since ® is not assumed to have a density function, it can have a
mass of probability of 1. Therefore, the Ledyard model includes both
risk-neutral and risk-averse bidders. Included as special cases are models
where all bidders are risk-neutral and all bidders are equally (constant
relative) risk-averse.

The other definitions and assumptions used in the model are as follows.
The number of bidders is denoted by N and the value to bidder i of the
auctioned object is denoted by v;, as in the preceding paragraphs. For
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each bidder i, v; is assumed to be drawn from the uniform probability
distribution on the nonempty interval [v, V], where v = 0. Each bidder
knows his own object value before he submits his bid but knows only
the probability distribution from which his rivals’ values are drawn. We
also assume that the bidders do not cooperate (i.e., collude) with each
other. Finally, we assume that every bidder behaves as if the assumptions
contained in this paragraph and in the immediately preceding paragraph
are true.

The equilibrium bidding strategy function for this model has two parts.
For bids that do not exceed b, as defined in statement (3.5), the equi-
librium bid function is

N -1 .
b'_!+N~l+ri(v' v),i=1,2,...,N. 3.7)
This will be verified as follows. Suppose that bidder j believes that the
bid of each of his rivals satisfies bid function (3.7) when it does not
exceed b. Then we will demonstrate that bidder j’s optimal bid satisfies
the same function when it does not exceed b.

The v inverse of bid function (3.7) is

N-1+r I;

N-1 P N-1%

v; = gb, ) = (3.8)
Now the probability that the bid of bidder i will be less than some amount
b in the range of (3.7) is the probability of drawing values of v; and r;
which when substituted in (3.7) will yield a bid less than b. Note that
statements (3.5) and (3.8) imply that g(b;, r;) = v, for all b; € [v, b], for
all 1, € (0, 1]. Therefore, using (3.8) and the density function for v;, we
find that the probability that bidder i will bid less than b is

I ~a(b,rp
F(b) = J; ﬁ [v — v] ' dv; d®(r)

[N -1+ E@Ib — v]
IN-1[v-vl

(3.9)

where E(r) is the expected value of r;.

Recall that v,, . . ., vn, I, . . ., I'y are drawn independently. Therefore,
the probability that all (N — 1) rivals of bidder j will bid less than some
amount b in the range of (3.7) is [FO)IN-". Let v represent the constant
bid density [N — 1 + E@I(N — D& — v)] " in (3.9). Then [F(b)]N !
can be written simply as YN '[b — v]¥ .

Now recall that bidder j has the utility of money income function y".
If he wins the auction, he receives the money income (v; — b;). Thus
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his (pseudoconcave) expected utility function of the bid b; and the object
value v; can be written as

Ub) = vy — WY (v; — by". (3.10)
The derivative of U is
U'(b) = v (b — »)N vy — by
(N = Dv;—v) = (N —=1+r)b— vl @G11)

Assume that v; > v; then U(b) is positive on (v, v;). Also, U’(b;) changes
sign only once on (v, v;) and the change in sign is from positive to
negative. Thus the unique bid by that maximizes (3.10) is the value that
equates the square bracket term in (3.11) to zero:

N -1

b= vt —
T YT N 1+

(v; — v). (3.12)
Thus, if bidder j believes that each of his rivals will use bid function
(3.7) for bids that do not exceed b, then his best strategy is to use the
same bid function for bids that do not exceed b. Therefore, (3.7) satisfies
the Nash equilibrium condition.

The equilibrium bidding strategy function (3.7) implies that the trun-
cated probability distribution function on p, the winning bid and sales
price, is the following.

Gy(p) = [y(p — VIV, YpE [v, bl, (3.13)
where
y=IN-1+EOIN-1DHF-v]" (3.14)
Thus the truncated mean py of the sales price is

I NN — 1)V = V)
Pr = jv p dG(p) = (N + DN - 1 + E0)] +v. @G5

Even in the absence of an explicit solution for the bid function for
bids which exceed b, the Ledyard model of the first-price auction has
several testable implications in addition to the ones which follow from
the expected utility hypothesis. Given that the Dutch auction is iso-
morphic to the first-price auction, these same implications apply to the
Dutch auction. The testable implications of the model can be divided
into the implications for individual bids which follow from (3.7) and
the implications for the distribution of sales prices which follow from
(3.3) — (3.5). We will focus on the latter.
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The Vickrey model is the special case of the Ledyard model in which
the entire mass of the probability distribution ® is concentrated at
r = 1, which implies E(r) = 1. Let Gy(-) be the probability distribution
for the sales price and py be the mean sales price for the Vickrey model
of the first-price auction. Setting E(r) = 1 in statements 3.13) — (3.15)
yields:

N
N
Gv(p) = [m P - !)] ; (3.16)
- _(N-DE -V
pv = TN+l TY (3.17)

Statements (3.16) and (3.17) can be used to calculate the variance of the
sales price in the Vickrey model as follows:

v+ 1y
Vilp) = fv (p — ﬁv)2 dGv(p)
_ (N - X~ v
NN + 1N +2)°

The strict risk-averse Ledyard model is the special case of the Ledyard
model which excludes the Vickrey model; in other words, the strict risk-
averse Ledyard model requires that ® (r) > 0 for some r < 1 although
® can have a mass of probability at r = 1. Let G,(-) be the probability
distribution for the sales price and P, be the mean sales price for the
strict risk-averse Ledyard model. In the following paragraphs we will
derive the relation between G (-) and Gv(-) and the relation between
P, Pv, and P,.

Inspection of statements (3.13), (3.14), and (3.16) reveals a strong first-
order stochastic dominance ordering of G(-) over Gy(-); that is

Gr(p) < Gv(pP)VPE(Y, b]. (3.19)

Furthermore, G,(-) is identical to G(:) on [v, b]. Therefore, G.(-) dom-
inates Gy(-) on [v, b]. Since GL(*) is a probability distribution function,
it must be nondecreasing on [b, v]. Furthermore, since G (b) < 1, we
must have Gy (p) > G(b) for some pE(b, v]. Therefore, there is a strong
first-order stochastic dominance ordering of G, () over Gy(*) on [v, V].
This result will be used in Sections V and VI below.

_Since Gy (-) agrees with G1(-) on [v, b] and increases somewhere on
(b, vI. we must have p;. > pr. Inspection of (3.15) and (3.17) reveals that
Py > Pv. Finally, inspection of (2.10) and (3.17) reveals that P2 = Pv.
Therefore, p. > py = p,. This result will be used in Sections V and VI
below.

(3.18)
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IV. EXPERIMENTAL DESIGN

The design and execution of the experiments are shaped by the following
objectives:

A. Control the procedures for conducting each experiment so that all
experiments—insofar as is possible—are conducted in the same way.

This is the standard design objective of minimizing extraneous “‘noise’’
in experimental outcomes. However, this consideration becomes of am-
plified importance when two institutions, such as the Dutch and first-
price auctions, are being compared which theoretically produce identical
outcomes. In this situation in order to identify any true behavioral dif-
ference in the two auctions, the variability within first-price replications
and within Dutch replications may have to be relatively small. We have
attempted to achieve this by using the PLATO computer system to
present programmed experimental instructions and practice examples to
each subject bidder, to record all data, inconspicuously, and to enforce
the appropriate market rules uniformly across replications.

B. Provide an experimental design that permits paired comparisons of
the treatment effects of the different auction institutions and uses dif-
ferent treatment switchover sequences on paired subject groups.

Again, this is the common scientific objective of attempting to reduce
error. Paired comparisons increase the power of the test while switch-
overs increase the credibility of the claim that any measured differences
are attributable to differences in the auction institutions and not to dif-
ferences in particular subject groups. But these considerations increase
in importance if we encounter small, and subtle, differences among the
Dutch and first- and second-price auction institutions. Consequently, all
experiments consist of 30 sequential auctions: 10 Dutch (first), followed
by 10 first (Dutch), and finally 10 Dutch (first) auctions. Table 1 lists all
the first and Dutch switchover experiments, and Table 2 lists all the
Dutch and second switchover experiments. For example, in Table 1,
experimental session dfd3, representing one member of the third pair of
experiments, using three bidders, consists of a 30-auction sequence of
10 Dutch, 10 first, and 10 Dutch auctions. The values v;, for each of the
three bidders in dfd3, are drawn with replacement from a uniform dis-
tribution on the interval [v, ¥] for each of the 30 auctions. Session dfd3
is matched with fdf3’, the latter using a different group of three subject
bidders in a first-Dutch-first 30-auction sequence but using the identical
value sequences drawn randomly for the three subjects in dfd3. In Table
| any two pairs such as 3 and 3’, 10 and 10’, and 5 and 5’ are ‘‘matched”
only with respect to the value sequences applying to the different sets
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of N subjects in each pair. An x denotes that the subjects were expe-
rnenced, i.e., had participated in a previous such experiment. For example
dfd8x and fdf8'x are matched pairs of experienced subjects (N = 4),

C. Vary N systematically across experiments so that the Vickrey and
Ledyard models of noncooperative equilibrium bidding can be tested Sfor
auction markets with various numbers of rival bidders.

For each N, we want to test some implications of the (null) Vickrey
risk-neutral hypothesis against the (alternative) strict risk-averse Ledyard
hypothesis.” In Section VI we report a Kolmogorov—Smirnov test of the
hypothesis that, for each N, the frequency distribution of winning bids
came from the distribution function Gy(-) in statement (3.16). Also re-
ported in Section VI is a binomial test, for each N, which compares
observed and risk-neutral theoretical prices in first-price auctions.

D. Hold constant the expected gain per bidder as N increases so that
motivation is approximately the same for any given bidder independently
of the size of the bidding group in which helshe is a participant.

It 1s well known that any market (or other) decision task may have
significant subjective costs of thinking, calculating, deciding and trans-
acting (Siegel, 1961; Marschak, 1968; Smith, 1976). The greater is the
explicit monetary (or other) reward relative to this subjective transactions
cost, which is obtained as an outcome of the decision, the more likely
will maximization of this reward be the predominating influence in de-
termining the decision. Since subjective transactions cost is not normally
observable, but may be a contaminating factor in testing a theory, it can
be important to attempt to control for this contamination.

That motivation may be a problem in the larger groups follows most
directly from the Vickrey model. From the Vickrey bid function (3.4),
it v is the highest value drawn among N bidders, then the price is

p= (N—b;l)(v—x)ﬂo
determined by the bid of the highest bidder. Profit to the highest bidder

1s thus
p—-Vv
N-1"

T=V-p=

From the mean Vickrey price in (3.17) it follows that expected profit per
bidder is
V-u

“NNID (4.1)

Z| 2
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Table 1.
Number Mean and Variance of Ten Prices, by Institution,
Experi- of in Sequence
mental Bidders
Session N Statistic Dutch First Dutch First
Mean 1.30 2.40 1.32
*dfd3 3
Variance .098 .162 235
Mean 2.66 3.32 2.02
*fdf3’ 3
Variance 1.092 297 1.166
Mean 2.74 2.72 2.22
fdf10 3
Variance 203 1.017 268
Mean 2.62 2.84 2.36
dfd1o’ 3
Variance .260 .827 .436
Mean 2.42 2.22 2.40
dfd10x 3
Variance .500 .402 .420
Mean 6.06 5.46 4.74
fdf8 4
Variance .956 .996 5.256
Mean 5.70 5.46 3.78
dfdg’ 4
Variance 1.10 916 3.764
Mean 5.43 6.03 5.64
dfd8x 4
Variance 1.329 .669 1.596
Mean 591 5.97 5.64
fdf8'x 4
Variance 1.361 969 1.636
Mean 7.75 9.52 8.83
dfd9 S
Variance 3.565 724 2.649
Mean 8.62 9.58 9.31
fdf9’ 5
Variance 2.804 2.104 1.481
Mean 9.07 7.66 9.70
fdf9x 5
Variance 769 1.766 .260
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Table 1. (Continued)

Number Mean and Variance of Ten Prices, by Institution,
Experi- of in Sequence
mental Bidders
Session N Statistic Dutch First Dutch First
Mean 9.04 8.62 9.82
dfd9’x S
Variance 1.216 2.204 1.104
Mean 12,72 12.48 13.60
*dfd2 6
Variance 3.231 6.20 3.896
Mean 13.60 13.44 13.96
*fdf2' 6
Variance 2.207 6.356 3.716
Mean 12.86 13.22 12.38
*dfd4 6
Variance 1.26 4.651 5.086
Mean 13.18 13.42 12.86
*fdf4' 6
Variance 2.846 5.548 6.238
Mean 31.30 30.40 29.50
*dfds 9
Variance 2.56 6.26 4.00
Mean 31.78 30.16 30.88
*dfs’ 9
Variance 4.064 6.196 4.404

Notes:
* Initial series of experiments.
All variances are maximum likelihood estimates.

Hence, expected profit per bidder declines inversely with N?, and mo-
tivation may decline rapidly. We attempt to control for this with the
following variable reward design: For given v, use (4.1) to choose V as
a function of N such that expected profit per bidder is a constant v,
under replication with different N. This requires

V=NN+Dvo+v. 4.2)

The parameter values vy = $.40 and v = $.10 are used in the experiments
reported here. The corresponding values of v, 7,, and p, for each N are
shown in Table 3. With expected profit per bidder set at $.40, the ex-
pected earmings of a subject in any 30-auction sequence is $12.00. Since
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Table 2.
Number Mean and Variance of Ten Prices by Institution,
Experi- of in Sequence
mental Bidders
Session N Statistic Dutch Second Dutch Second
Mean 2.06 2.22 1.84
sds7 3
Variance 1.35 .668 427
Mean 3.16 2.02 2.82
dsd7’ 3
Variance 392 .50 304
Mean 12.78 11.66 11.94
dsd1 6
Variance 2.028 12.638 3.065
Mean 11.74 13.10 10.30
sdsl’ 6
Variance 6.949 7.831 8.720
Mean 14.62 11.14 13.54
dsd3x 6
Variance 571 4.487 2.674
Mean 25.90 27.10 28.72
dsd4 9
Variance 10.08 12.32 7.684
Mean 27.16 29.98 26.80
sds4’ 9
Variance 19.716 11.664 23.94

Note: All variances are maximum likelihood estimates.

subjects receive $3 for volunteering and arriving on time for an exper-
iment, total expected earnings is $15.00 per subject per session. A session
requires about 1 hour to complete.

We do not argue that making v, a design constant guarantees equal
motivation across experiments in which N varies from 3 to 9. Rather,
we argue that this procedure should yield more uniform motivation than
if we ignored the issue. Ideally we want the utility of the monetary
rewards relative to that of nonmonetary factors to be invariant across
experiments, but neither utility nor the nonmonetary factors are observable.

In our experimental design we planned to conduct experiments for
N = 3, 6, and 9 and to use these observations to test the Vickrey and
Ledyard models. As explained in Section V, as the research developed
it became important for additional experimental observations to be ob-
tained for N = 4 and N = 5 (see Tables 1 and 3).
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Table 3. Experimental Design Parameters: Dutch and Sealed-Bid
Auctions (v = $.40, v = $.10)

N 3 4 5 6 9
V= AN(N+ 1D + .1 4.90 8.10 12.10 16.90 36.10
. = 4N 1.20 1.60 2.00 2.40 3.60
p,o= AN(N-1) + .1 2.50 4.90 8.10 12.10 28.90
¢ - p = 8N 2.40 3.20 4.00 4.80 7.20
py - v = 28% .40 .60 .60 .80 1.20
3 ($/tick) .20 .30 30 .40 .60
T* (seconds/tick) 2 2 2 2 2
Note:

* These entries apply to the Dutch auction only.
All other entrics apply to the first, second and Dutch auctions.

E. Control for the effect of certain technical differences between Dutch
and sealed-bid auctions that might account for differences in behavior
other than that which would be attributable to the informational and
incentive differences among the various auction institutions.

The Dutch auction requires three technical parameters to be specified
which are not part of any theory of Dutch auctions and which represent
typical features of an institution that are usually ignored (perhaps jus-
tifiably) in economic modeling. These parameters, which could conceiv-
ably affect behavior, are as follows:

1. The distance between the starting price and the highest possible
value that might exist among the bidders. If p, is the starting price
this distance is p, — V in the experiments, where distance is
measured in dollars.

2. The delay time 7 between price decrements, or successive ‘‘ticks”
of the digital clock.

3. The decrement, 8, by which price falls with each ‘‘tick’’ of the

clock.

If any of these parameters of the Dutch auction affect behavior, then
there is not one Dutch institution but many depending upon the values
of these parameters. In our initial design with experimental groups of
size 3, 6, and 9, we elected to set § at the corresponding values $.20,
$.40. and $.60, and clock speed (1/1) constant with 1 = 2 seconds per
tick (see Table 3). With these parameter values the distance v — p, from
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the greatest value to the mean Vickrey price is 12 ticks or price dec-
rements. With similar motivation we elected to make each starting price
2 ticks or price decrements above V, as shown in Table 3 for N = 3,
6, and 9. Later when we decided to conduct experiments for N = 4 and
5, some of this modular-3 symmetry could not be maintained except as
an approximation. For example, 3 had to be divisible by 0.10, which was
the atomic measure of value chosen for the computer program.* Thus
for both N = 4 and N = 5 we set 8 = 0.30 (instead of 26.67 and 33.33,
respectively, which would have preserved the modular-3 symmetry).

In the Dutch auction the price change decrement d also defines the
distance between adjacent feasible discrete bids, and therefore the prices,
that can result.’ It follows that if strict technical comparability among
the experimental Dutch and sealed-bid auctions is to be maintained, it
is essential that all adjacent feasible sealed-bids also be separated by the
same distance & that applies in the Dutch auction. Our computerized
first- and second-price auction experiment accomplishes this by rounding
each subject’s bid to the nearest & bid node, except that bids of v and
of zero are always admissible. Consequently, in an auction with N =
3, since 8 = .20 and values range from v = .10 to Vv = 4.90 (see Table
3), a bid of $4.54 would be rounded to $4.50, then displayed to the
subject along with a message asking him/her to either confirm and enter
this bid or press a key to alter it. Hence, each subject in first- or second-
price sealed-bid auctions always had the opportunity to verify his/her
rounded bid before it was entered into the market. Except for the starting
price and clock speed parameters, all other design parameters in Table
3 apply also to the first- and second-price auctions.

Before each session begins, the experimenter executes an initialization
procedure to define the experiment. In this procedure one chooses the
auction sequence, say 10 Dutch, 10 first, and 10 Dutch auctions. Then
the vector of parameters (v, V, 8, N, py, 7) is selected. The parameters
(po, 7) apply only to the Dutch sequences. All other parameters apply
to both the Dutch and first-price (also the second-price when appropriate)
auctions. Consequently, it is impossible to do experiments in which the
set of Dutch auction price outcomes is distinct from the set of first-price
(or second-price) outcomes in paired comparison treatments. The PLATO
instructions for a Dutch followed by a first experiment are reproduced
in the Appendix to this chapter. ‘

V. OVERVIEW OF EXPERIMENTAL RESULTS

A. Previous English and Dutch Oral Auction Experiments

Coppinger, Smith and Titus (1980, pp. 6—10) have reported the results
of six English and/or Dutch oral auction experimental sessions with N =
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% bidders. In the first four of these sessions individual valuations were
cqually spaced, with adjacent values separated by $1.50, but randomly
assigned to individual bidders. The mean deviation of English auction
prices from the second highest valuation was only $.0124, which was
insignificantly different from zero (t. = .096). The Dutch oral auctions,
in this context, yielded a mean deviation, from the second highest val-
uation, of —%1.14, which was quite significantly below zero (t; = — 5.09).
In sessions 5 and 6 the valuation assignments were drawn (with replace-
ment) from the interval [$.10, $10.0] (using $.10 increments). In neither
auction was the mean price significantly different from the Vickrey mean
given by Equation (3.17) (t. = —1.06, t, = —.83). Similarly, the English
and Dutch price variances were not significantly different from the pre-
dictions of Equations (2.11) and (3.18). In these sessions 97.2% of the
English auction awards, but only 77.8% of the Dutch auction awards,
were Pareto-optimal.

In the Dutch experiments, the experimenter lowered the price in dec-
rements of $.50 every 7 seconds, while in the English auctions the sub-
jects named the amount of any increase over the previous bid, which
was typically $.25. This technical difference could have affected the
results, which is why this factor was computer controlled in the Dutch
and first- and second-price comparisons reported here.

B. Dutch, First-Price, and Second-Price Auction Results

The means and maximume-likelihood variances for the individual Dutch-
first experiments are contained in Table 1. A comparative examination
of the means suggests that Dutch auction prices tend to be lower than
prices in first-price sealed-bid auctions. Several of the paired experiments
illustrate the importance of a paired comparison design which uses the
same random sequence of valuations. Thus in fdf8 the final series of
first-price auctions has a lower mean (4.74) than the middle sequence
of Dutch auctions (5.46). But if we compare means using the more
relevant paired experiment, dfd8’, it is seen that the final series of Dutch
prices has a mean (3.78) considerably below the mean of the final first-
price sequence in fdf8. In this particular matched pair, the random se-
quence of valuations for auctions 21 to 30 happened to be particularly
low. Similarly, the mean price in first (8.62) is below both Dutch means
in dfd9’x, but it is well above its matched Dutch mean (7.66) in fdf9x.
Again the same phenomenon is illustrated in dfd5 and fdf5’. One cannot
overemphasize the importance of a suitably controlled paired-comparison
design when comparing different exchange institutions, particularly when
the theory, or other a priori considerations such as exploratory exper-
iments, allege that the institutions are equivalent.

The means and maximum-likelihood variances for the individual Dutch-
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Table 4. Theoretical and Pooled Means and Variances: All Auctions

Second
Dutch, First, First, Dutch,

N Statistic Observed Observed Theoretical*  Observed  Theoretical
3 Mean 2.42 2.44 2.5 1.97 2.5
- Variance 421 .589 .384 759 .96
4 Mean 5.33 5.64 4.9

Variance 1.63 1.80 .96
< Mean 8.78 9.14 8.1
N Variance 2.06 1.37 1.83

Mean 13.12 13.22 12.1 11.21 12.1
6 Variance 3.77 431 3.0 8.20 6.4
g Mean 29.26 31.02 28.9 27.02 28.9

Variance 7.03 4.91 8.38 18.66 18.85
Note:

* These are the means and variances implied by the Vickrey hypothesis: they are calculated from (3.17)
and (3.18).

second experiments are shown in Table 2. A pronounced tendency for
prices in the second-price sealed-bid auction to be below those in the
Dutch auction seems evident.

The pooled mean and variance of prices across all experiments for
Dutch and first- and second-price auctions is shown in Table 4. For all
N. the observed means are ordered m, < myg < m,. The theoretical
prediction under the Vickrey assumptions is m, = my = m, and under
the Ledyard assumptions is m, < my = m,. Hence, the data appear to
be consistent with the assumption that bidders are risk-averse, but in-
consistent with the hypothesis that the Dutch and first-price institutions
arc isomorphic. These results are generally consistent with those reported
by Coppinger, Smith and Titus (1980, pp. 21-22) for their less rigorously
controlled experiments.

VI. TESTING THE VICKREY AND LEDYARD
MODELS

Initially our research design for the Dutch and first-price auctions con-
sisted of the eight experimental sessions indicated by an asterisk in Table
1. The remaining experiments listed in Table | were conducted after
examining the data from the first-price auctions in this initial series. Our
reasons for scheduling the additional 11 experiments will be made clear
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Table 5. The Kolmogorov-Smirnov Statistic D}, for Dutch, First- and
Second-Auction Price Distributions

First-Price Auctions, Dutch Auctions, Second-Price Auctions,
N Do = —suplG(p)=Gp)) Dy = —suplGy(p)—Gp)l D, = —sup(Fy(p)—F(p)]
3 09 (n = 70) A1 (n = 120) 33 (n = 30)*
4 42 (n = 60)* 37 (n = 60)*
§ 30 (n = 60)* 25 (n = 60)*
6 38 (n = 60)* .26 (n = 110)* A9 (n = 60)
9 40 (n = 30)* A9 (n = 60) .24 (n = 30)

Note:
* Reject hypothesis that G or F is the appropriate distribution (Pr = .005).

as we examine the test results for the first-price auction reported in
Tables 5 and 6.

A. Risk Aversion and Bidding Behavior in the First-Price Auction

Table 5 shows the results of a one-tailed Kolmogorov—Smirnov test,
tor each N, of the hypothesis that first-price auction prices came from
a population with distribution given in (3.16). We reject the null hy-
pothesis (Pr. = 0.005) in favor of the risk-averse altermative for N =
6 and 9. In applying this test to the data from the first series of N =
3 experiments we were not able to reject the null hypothesis.

The tests in Table 5 do not make use of the fact that the assigned
valuations vi(t) are controlled and observed in the experiments. An al-
ternative (and more powerful) test making use of this information involves

Tuble 6. Binomial Test Comparing Observed and Predicted Risk-
Neutral Prices in First-Price Auctions

Total Number Number of Auctions
A of Auctions for which ¥(t) > 0* Unit Normal Deviate, U,
3 70 43 L.91 (P = .06)
4 60 54 6.20 (P < .0001)
s 60 60 7.75 (P < .0001)
t 60 52 5.68 (P < .00001)
9 30 30 5.48 (P < .0001)

Vore:

N-1
Cht = [plt)—v] - N max Vi) —v]
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an examination of the distribution of the difference between the observed
normalized price p(t) — v and the predicted risk-neutral normalized price

from (3.17), namely
N -1
(T>[max vi(t) — v] .

{

Table 6 reports the results of a binomial test, for each N, of the null
hypothesis that in first-price auctions the difference

3(t) = [p(t) — v] — (¥> [max vi(t) — v]
1

is equally likely to be positive or negative (risk-neutral) against the one-
tailed alternative that the difference is more likely to be positive (risk-
averse). From the values of U, (the unit normal approximation to the
binomial) we are able to reject the null hypothesis at very high levels
of significance for N = 6 and 9. In applying this test to the data from
the first series of N = 3 experiments we were not able to reject the null
hypothesis at any level of significance approaching that of the N = 6
and 9 tests.

The apparent divergence of the N = 3 results from the N = 6 and
9 results in both the Kolmogorov—Smirnov and binomial tests led to
three provisional hypotheses:

(1) The Ledyard model is superior to the Vickrey model, except that
for N = 3 the assumption of noncooperative (Nash) behavior
fails.

(2) The Ledyard model is superior to that of Vickrey for values of
N larger than 4 or 5, i.e., the assumption of noncooperative be-
havior breaks down somewhere between N = 3 and N = 6, to
be determined.

(3) The Ledyard model is superior to the Vickrey model for all values
of N, with the apparent failure for N = 3 attributable to sampling
error in our first two experiments.

On the basis that there is considerable experimental evidence in the
context of oligopoly competition (Shubik 1975, p. 282; Fouraker and
Siegel, 1963) to suggest that the assumption of noncooperative behavior
is supported for N = 3, we conjectured that the additional experimental
observations would support (1). However, on this same prior evidence
we could not rule out the possibility that (3) would be supported. At
this critical juncture the additional experiments were conducted. These
experiments included sixteen sequences of ten first-price (and seventeen
Dutch) auctions and are recorded in Table 1 without asterisks.

The test results in Tables 5 and 6 allow us to reject the null hypotheses
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for N = 4 and 5 at the same levels of significance at which we were
able to reject the null hypotheses for N = 6 and 9. The theoretical and
empirical distributions for the Kolmogorov-Smirnov test for N = 5 are
presented in Chart 1. On the basis of these tests, for N > 3, we reject
the risk-neutral in favor of the risk-averse model of Nash equilibrium
behavior.

The same tests applied to data from all of the N = 3 experiments
reveal, in Tables 5 and 6, that we cannot reject the risk-neutral hypoth-
esis. However, since there is no reason to suppose that individuals in
groups of size N = 3 are any less risk-averse than those in groups of
size N > 3, we interpret the results as also supporting the subsidiary
hypothesis that the assumption of noncooperative behavior fails to apply
when N = 3. We can think of no alternative explanation.

B. Risk Aversion and Bidding Behavior in the Dutch Auction

Table 5 reports the results of a one-tailed Kolmogorov—-Smirnov test
for each N, of the hypothesis that Dutch auction prices came from a

Chart 1. First-Price: Theoretical and Empirical Probability
Distributions for N = §
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population with distribution given in (3.16). We are able to reject the
null hypothesis (Pr. = 0.005) in favor of the risk-averse alternative for
N = 4, 5, and 6 but are not able to do so for N = 3 and 9. The
N = 3 Dutch auction results are consistent with the N = 3 first auction
results. But the Dutch auction test results for N = 9 are not consistent
with the pattern of test results for the first-price auction. However, one
must keep in mind that Gy(+), for the Vickrey hypothesis, or G;(-), for
the Ledyard hypothesis, is the distribution function for sales price in the
Dutch auction only if it is isomorphic to the first-price auction. Thus the
Dutch auction test results in Table 5 are for a joint test for the effects
of risk aversion and the first/Dutch isomorphism. Our rejection of this
isomorphism in the next section of the paper will clarify the Dutch
auction test results for N = 9 in Table 5.

C. Bidding Behavior in the Second-Price Auction

Now consider the second-price auction and note that the pooled mean
price in second-price auctions reported in Table 4 is below the theoretical
mean in Equation (2.10). Results of the Kolmogorov—Smirnov test of the
hypothesis that second-price winning bids came from a population with
distribution given by (2.9) are shown in Table 5. The hypothesis is re-
jected for N = 3, but not for N = 6 and 9. Coppinger, Smith and Titus
(1980) also report mean prices below the dominant strategy expected
price in second-price auctions (with varying significance in different ex-
periments). They also report considerable learning effects in that some
subjects in second-price auctions converge to the dominant strategy over
successive auctions.

VII. PRICE AND EFFICIENCY COMPARISONS IN
THE DUTCH, FIRST-PRICE AND SECOND-PRICE
AUCTIONS

The paired sample comparisons listed in Table 7 show that the Dutch
and first-price auctions are not behaviorally isomorphic. In every paired
comparison the mean price is higher in the first than in the Dutch auction.
Using the nonparametric sign test, we reject the null hypothesis that the
mean price difference m;, — my is as likely to be positive as negative
in favor of the alternative that Dutch prices tend to be below those in
the first-price auction (Pr < .001).

These Dutch auction findings not only call into question the theoretical
cquivalence of Dutch and first-price auctions; they also provide clear
evidence against the proposition that Dutch prices will be among the
highest obtainable on the grounds that any buyer will tend to “*stop the
clock’™ as soon as the price is slightly below that buyer’s reservation
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Table 7. Dutch-First Paired-Sample Mean Price Differences

FExperiment N First Price Dutch Price m,—m,
dfd 3. fdf 3° 3 2.36 1.98 .38
fdf 10. dfd 10/ 3 2.60 2.57 .03
fdf 8. dfd 8' 4 5.42 4.98 .44
difd 8x. tdf 8'x 4 5.86 5.68 18
dfd9. fdf 9 5 9.15 8.72 .43
fdf 9x. dfd 9'x 5 9.13 8.84 .29
dtd 2, fdf 2’ 6 13.35 13.25 .10
dfd 4, fdf 4’ 6 13.09 12.89 .20
dfd S, fdt § 9 31.02 30.32 .70

value (Boulding, 1948, p. 42; Cassady, 1967, p. 67). The opposite behavior
is evident. On a more impressionistic level it is worth noting in this
regard that many subjects report that they enjoy the ‘‘clock experiment’’
more than the others because of the “‘suspense of waiting.”” In this sense
they seem to perceive the Dutch auction as a ‘‘waiting game,’” in which
lower bids are entered than in the first-price sealed-bid auction.

The Dutch and second-price paired sample comparisons are shown in
Table &. In each paired comparison the mean price is higher in the Dutch
than in the second-price auction. This is consistent with the risk-averse
model of Dutch auction bidding and the dominant strategy model of
sccond-price auction bidding. It is also consistent with the more limited,
indirect, empirical results reported by Coppinger, Smith and Titus (1980,
pp. 9-10. 13-18) in which Dutch prices are above English auction prices
and the latter do not differ significantly from prices in the second-price
auction. Using the sign test, the positive difference between the Dutch
auction mean and the second-price mean is significant (Pr = .06).

If we let V(1) be the highest value drawn among N bidders in auction
. and W (1) be the value drawn by the winning bidder in auction t, then
the efficiency of auction t is measured by

En(t) = 100 W (t)/Vn(t).

Tuble 8. Dutch-Second Paired-Sample Mean Price Differences

Mean Dutch Mean Second
Faperitient N Price, m, Price, m, my—m,
sds7. dsd7’ 3 2.73 1.97 .76
dudt. sdst’ 6 12.61 11.23 1.37

dsd4, sds4 9 28.20 27.02 1.18
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Tuble 9. Mean Efficiency (and Percent Pareto-Optimal Allocations) by
Institution and Number of Bidders

Number of Over All
Institution Bidders 3 4 5 6 9 Groups
Dutch 97.32 96.25 98.48 98.89 98.44 97.95

(81.82) (76.67) (81.67) (83.64) (71.67) (80.00)
First Price 97.61 99.62 99.80 98.26 99.77 98.88
(82.86) (95.00) (93.33) (83.33) (83.33) (87.86)
Second Price 99.28 99.89 99.54 99.65
(93.33) (96.67) (90.00) (94.00)

Efficiency is 100% if and only if the winning bidder drew the highest
value, which is a Pareto-optimal allocation. Unrealized gains from ex-
change will characterize any auction which is less than 100% efficient.
Table 9 reports the mean efficiency of all auctions classified by institution
and group size. The most efficient institution is the second-price auction
with mean efficiency 99.65% over all groups, followed by the first-price
auction (98.88%), with the Dutch auction being the least efficient
(97.95%). Table 9 also reports (in parentheses) the percent of total auc-
tions that were Pareto-optimal allocations.

VIII. TWO BIDDING MODELS THAT ARE
CONSISTENT WITH BIDDING BEHAVIOR IN THE
DUTCH AND FIRST-PRICE AUCTIONS

In Section IT we showed that standard behavioral assumptions imply that
the Dutch and first-price auctions are theoretically isomorphic. There-
fore. if one is to construct a bidding theory that is consistent with the
obscrvation that these auctions are not behaviorally isomorphic, he must
incorporate some nonstandard behavioral assumptions in the model. We
will in this section provide two possible explanations of the failure of
the predicted isomorphism. One explanation will be based on the utility
of playing the Dutch auction ‘‘waiting game.’’ The other explanation will
be based on bidder violation of Bayes’ rule.

We have adopted the ‘‘utility of playing the game’’ approach to mod-
eling the Dutch auction because of the comments made by some ex-
perimental subjects. They reported that they especially enjoyed the
clock experiment’” more than the others because of the ‘‘suspense of
waiting.”” We inferred from these comments that the Dutch and first-
price auctions may not be behaviorally isomorphic because of a property
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that follows from the real-time aspect of the Dutch auction: bidder utility
from playing the waiting game.

We have two reasons for adopting the approach to the Dutch auction
that is based on bidder violation of Bayes’ rule. First, there is independent
cvidence that behavior is not consistent with Bayes’ rule (Grether, 1980).
Secondly, the only predicted comparison of bidding behavior across
auctions that depends on Bayes’ rule is the predicted isomorphism be-
tween the Dutch and first-price auctions, and that prediction is the one
that is clearly inconsistent with our observations.

Now consider bidding models that include utility from playing the
game. Assume that in the first-price auction an active bidder i gets the
nonnegative utility a; from playing the first-price auction game. That is,
we now replace the expected utility function (2.1) with

Uib) = a; + Fibjui(v; — by, (8.1)
where a; = 0. We now proceed, as we did with (2.1), to assume that

(8.1) 1s pseudoconcave and has a unique interior maximum at b{. Then
by will satisfy the first-order condition,

0 = Ui(b))
Fi(b?)ui(vi — bY) — Fi(b)ui(v; — bf). (8.2)

il

Now consider the Dutch auction and assume that the bidder gets utility
a;(t) from playing a Dutch auction game of length t. Assume that o; is
a positive, increasing function; that is, assume that the bidder enjoys
playing this “‘waiting game’’ and that he gets more utility from playing
a longer game. Suppose that the auction is in progress at time t and
bidder i must decide whether to accept the bid b(t) or let the auction
continue. If he accepts the bid b(t) he gains the money income v; — b(t)
with utility u,(v, — b(t)). In addition, he gains the utility o;(t) from playing
a Dutch auction game of length t. If bidder i does not accept b(t), he
will be able to play a longer auction game and will have a chance to
obtain the auctioned object at a lower price. Suppose that the bidder
does not accept b(t) but rather lets the auction continue for one more
tick of the auction clock to time t + At, where At > 0. By doing so,
he obtains the utility o;(t + At) of playing a longer game and the prob-
ability Hy(b(t + At)|b(t)) of obtaining the utility u(v; — b(t + At)) of the
monetary gain v; — b(t + At). Thus the change in expected utility at
time t from not accepting b(t) and planning to accept b(t + At) is

AXi(t) = ot + At) — o4(t) (8.3)
+ Hy(b(t + ADb()u;(v; — bt + At)) — u(v; — b(1)).

Assume (for now) that bidder i believes that his rivals will use the



30 JAMES C. COX, BRUCE ROBERSON, and VERNON L. SMITH

same bidding strategies in the Dutch and first-price auctions. Given
Bayes’ rule, this assumption implies

Hi(b(t + At)|b(t)) = Fi(b(t + At))/F(b(t)). (8.4)

We now proceed, as in Section II, to assume differentiability of the
objective function. Thus, using (8.3) and (8.4), we find

9, €1(9)
Xi(t) = A],”Jl At |
ai(t) +{[ulv; — b(1) Fi(b(1))/Fi(b(1))] 8.5
— ui(v; — b))} b'(t).

Suppose that the optimal time for bidder i to stop the Dutch auction
is some t¥* such that t** € (0, T). Then, using (8.5), we have

Xi(t#*)
a () + {[u(v; — bEF)Fi(b(tF*))/Fi(b(tF*))] (8.6)
= w(vi — b(t))} b'(tF*).

We have o;(t**) > 0 and b'(t¥*) < 0; therefore the curly bracket term
in (8.6) must be positive. But this implies that the derivative of (8.1) is
positive at b(t¥*). Therefore, since (8.1) is pseudoconcave, we have
b(t#*) < bf, that is, for a given object value v;, bidder i’s optimal stopping
time for the Dutch auction yields a bid that is less than his bid in the
first-price auction.

If bidder i will bid less in the Dutch auction than in the first-price
auction, then he might believe that his rivals will behave in the same
way. Suppose that is the case; specifically, assume that

Hi(b(t + A[b(t) = [Fi(b(t + A)/Fy(b(t)]", (8.7)

0

Il

where 6; < . Statement (8.7) implies a first order stochastic dominance
ordering of the two distributions. Let t; be the ith bidder’s optimal stop-
ping time for the Dutch auction when his expectations satisfy (8.7) rather
than (8.4); then we have

0 = ai(t) + {[Bui(v; — b(1)) Fi(b(t))/Fi(b(i))] (8.8)
— ui(vi — b(i)} b'(&).

We have a;(f) > 0 and b’({) < 0; therefore the curly bracket term in
(8.8) must be positive. But this implies that the derivative of (8.1) is
positive at b(t;) and therefore that b({;) < b? since (8.1) is pseudoconcave.
Thus, bidder i will bid less in the Dutch auction than in the first-price
auction.

Now consider the model of bidder behavior in the Dutch auction that
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includes bidder violation of Bayes’ rule. Consider again the ‘‘real-time”’
model of behavior in the Dutch auction that was developed in Section
11. Observation of rivals’ bidding behavior in the Dutch auction is not
informative (in the specific sense in which that term is used in statistics).
In fact, recognizing that the Dutch auction is not informative is one
avenue for understanding the isomorphism between the Dutch and first-
price auctions that holds under conventional assumptions.

Now, however, assume that our representative bidder i behaves as if
his observations of his rivals’ bidding behavior in the Dutch auction were
informative. Specifically, assume that bidder 1 violates Bayes’ rule in the
following way. Given the observation that none of his rivals has accepted
a bid that is greater than or equal to b(t), the expected utility-maximizing
bidder will utilize the probability Gi(b(t + At)|b(t)) that none of his rivals
will accept a bid that is greater than or equal to b(t + At), where At > 0.
Assume that bidder i violates Bayes’ rule in a way such that

Gi(b(t + At|b(t)) = [Hi(b(t + At)|b(t)]™ (8.9)
= [H(b(t + AYYH,(b)I™,  m<1.

Statement (8.9) implies a first order stochastic dominance ordering of the
ith bidder’s conditional probability distribution Gi(b(t + At)|b(t)) and the
conditional probability distribution implied by Bayes’ rule, Hi(b(t + At))/
H,(b(t)). Thus (8.9) implies that, having observed that none of his rivals
has accepted a bid that is greater than or equal to b(t), the bidder under-
estimates the risk he bears by continuing to let the auction clock run.

We could now proceed to show that if we incorporate (8.9) into the
“real-time”” model of bidder behavior in the Dutch auction, then the
optimal bid in the Dutch auction is less than the optimal bid in the first-
price auction. This conclusion follows in the case where the represent-
ative bidder believes that his rivals will use the same bidding strategies
in the Dutch and first-price auctions and in the case where he believes
that his rivals will bid less in the Dutch auction, as in (8.7). The reasoning
that leads to these conclusions will not be reproduced here because it
is essentially the same as the preceding argument that includes statements
(8.7) and (8.8).

Given two theories, each predicting Dutch prices to be lower than
prices in the first-price sealed-bid auction, one would like to be able to
design an experiment that would provide a test of the two models of
behavior. The simplest such experiment that we can suggest is to replicate
an existing set of dfd and fdf experiments, with all parameters unchanged
with the exception that the monetary reward level is doubled. If the
utility-of-*‘suspense’” model is a correct interpretation of the Dutch auc-
tion results, then doubling the reward level should cause Dutch prices
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to increase toward the level of prices in the first-price auction. If the
probability-miscalculation model is appropriate, the price discrepancy
in the two auction systems should remain unchanged.

IX. SUMMARY AND CONCLUSIONS

A. Our theoretical analysis of Dutch and English “‘oral’’ auctions and
of first- and second-price sealed-bid auctions, generalizing and extending
the work of Vickrey (1961), can be summarized as follows:

|. Implications of the expected utility hypothesis: In first-price auc-
tions the optimal individual bid is less than the value of the auctioned
item. The amount by which value exceeds the optimal bid depends upon
an individual’s risk preference u; and expectations F; about rival bidding
behavior. Because of differing risk preferences and expectations among
individuals, bids need not be ranked in the same order as individual
values, and thus allocations need not be Pareto-efficient. A sufficient
condition for allocations to be Pareto-optimal is that all individuals have
identical strictly increasing bid functions. This requires the untenable
assumption that all bidders have the same utility function.

Bayes’ rule implies that the conclusions from the analysis of the first-
price auction apply to the Dutch auction. This is because individual
Bayesian expectations about rival bidding behavior will not be affected
by the ‘“knowledge’’ that at any given time in the auction no bidder has
as yet “‘stopped the clock.”” Such expectations are completely determined
by the prior probability that a given bid will win, and the Dutch clock
process itself 1s noninformative.

In the second-price auction the optimal bid is equal to the value of
the auctioned object independent of risk preference and expectations
about rival bids (a bid equal to value is a dominant strategy). The optimal
bid is thus higher in the second-price auction than in the first-price
auction for any given valuation. The allocations are Pareto-efficient, and
the probability distribution of price is that for the (N — 1)th-order statistic
for a random sample of size N from the probability distribution of values.
A similar calculation is not possible for the first-price auction without
imposing additional behavioral assumptions.

In the English auction, an expected utility-maximizing bidder will drop
out of the bidding only if the outstanding bid is not less than his/her
value. This is a dominant strategy, and in this sense the English and
second-price auctions are isomorphic.

2. Implications of the expected utility and Nash equilibrium hy-
potheses: By adding the assumption of Nash equilibrium bidding be-
havior and specializing the expected utility hypothesis to the class of
utility functions with constant relative risk-aversion, we can deduce the
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optimal bid as a linear function of object value in the first-price auction
for bids which do not exceed the risk-neutral maximum bid, b. The
resulting mode! does not imply Pareto-optimal allocations but does make
possible derivation of the truncated probability distribution of selling
price. The Vickrey risk-neutral model of the first-price auction is the
limiting case in which all bidders have a zero coefficient of relative risk
aversion.

B. From the results of 780 Dutch, first- and second-price auction
experiments we offer the following conclusions concerning the market
price behavior, and Pareto-efficiency of these three institutions:

1. Pooling across all experiments, the mean price in second-price auc-
tions is less than the mean Dutch price, which is in turn less than the
mean in first-price auctions. This is consistent with the weak (qualitative)
implications of the expected utility hypothesis, but not the hypothesis
of Bayes’ rule used in the analysis of Dutch auctions.

2. In first-price auctions for groups of size N = 4, 5, 6, and 9, but
not for N = 3, we reject the null hypothesis of risk-neutral Nash equi-
librium bidding behavior in favor of our version of the Ledyard risk-
averse model of Nash bidding behavior. This conclusion is supported
by Kolmogorov—Smirnov tests on the frequency distribution of prices
and by binomial tests comparing observed and risk-neutral theoretical
prices.

3. The Dutch and first-price sealed-bid auctions are not isomorphic.
This conclusion receives its strongest support from experiments carefully
designed for paired comparison, in which mean Dutch prices are con-
sistently and significantly below mean first-prices. We have offered two
theoretical explanations for the lower observed prices in the Dutch auc-
tion. One theory postulates a utility for the ‘‘suspense of waiting’’ in the
real-time Dutch auction. The second theory postulates a systematic un-
derestimate of the Bayes’ rule risk of loss from allowing the Dutch clock
to continue. The second theory is consistent with the results of inde-
pendent experiments testing Bayes’ rule, while the first theory is con-
sistent with the reported impression of subjects that they like the “‘sus-
pense of waiting’’ associated with Dutch auctions.

4. For N = 3, but not for N = 6 and 9, we reject the hypothesis that
prices in second-price auctions came from a population with distribution
defined by the (N — I)th-order statistic of values, which is implied by
the dominant strategy model of bidding behavior.

5. It is conjectured that the deviant results for the case N = 3 in both
first- and second-price auctions are due to failure of the assumption of
noncooperative behavior which underlies both the Nash and dominant-
strategy models of bidding.
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6. Efficiency, measured by the percentage of the theoretical total gains
from exchange that are actually realized, is greatest in second-price
auctions, next highest in first-price auctions, and lowest in Dutch auc-
tions. These results are inconsistent with the hypothesis, underlying most
bidding models, that individuals have identical utility functions.

This report has concentrated on the behavior of market price and
allocations and the consistency of such data with the predictions of
bidding theory in the three institutions studied. Questions of individual
bidding behavior, including learning with experience, will be examined
in & separate paper.

APPENDIX

The instructions to follow are for a PLATO Dutch auction experiment
followed by a first price sealed bid auction experiment.

Prodgram written by Bruce E. Roberson.
Consulting provided by VYernon L. Smith,

INSTRUCTIONS

This is an experiment in the economics of marKet
decision makKind, The MNational Science Foundation
has provided funds for the conduct of this re-
search, The instructions are simples and if vou
follow them carefully and maKe dood decisions vou
ma» earn a CONSIDERABLE AMOUNT OF MONEY which
will be PAID TO YOU IN CASH at the end of the
exrperiment .,

In this experiment we are going to create a mar-
ket in which vou will be buvers of a fictitious
commodity in a seauence of auctionss. The PLATO
computer will act as the "auctioneer" but it is
completely pPassive in the sense that it is used
solely to store and transmit information on de-
cisions made by the participants in the marKet.

Please tvepe in vour LAST NAME after the arrow
then pPpress -NEXT-.

{Use the EDIT Kev if vou makKe a ty¥pPing error.)
This information is used solely to aid in the
distribution of the cash earninds at the end of
the exreriment.
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— Testor

Thank-vous particirpant Testor.

Auction Resale MarKet
Number Value Price Profit

1 8,50

2 B,00

3 8.10

4 12,00

3 15.90

6 4,70

7 3,60

8 13.00

9 12,70

10 9.30

Total Profit:

This is vour pPersonal record sheet for the mar-
Ket experiment., Notice that the column labeled
"RESALE VALUE" has been filled in with dollar and
cents amounts, This indicates the walue to vou of
purchasing a unit of this commodity, This value
to vou may be thoudht of as the amount vou would
receive if vou were to resell the unit.

Notice that vou have a resale value of $8.350 for
the first auctions a resale wvalue of $6.,00 for
the second auctions a resale value of %B,10 for
the third auctions and so on., These resale wval-
ues are assigned randomly. You have an equally
likely chance of receiving anvy resale value he-
tween $0,10 and #%$16.890+ inclusive, That 1is: vou
are equally likely to receive $0,10, %0,30
D A I A IR AR NN ) ‘518050' $160900

Furthermores» the chance of vou beindg assidned anv
particular value in this randes for examprle $B.50
15 noet chanded if that value was assidgned ear-
lier to vou or to another pParticirpant, It 1is
therefore pPossible for vouw to det the same re-
sale value for different auwuction rPeriods or for
two Particirpants to have the same value in the
same awuction., All Participants will have their
resale values assidgned in this manner.
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If vou are able to maKe a epurchase (we’ll de-
scribe the buying process soon) vou will receive
the difference between vour resale value and the
PPrice ¥OuW Pav.

TO SUM UP:

resale value — price paid = profit

Mote that vour cash profits derend uPon vour
ability to buy a wunit at a Price bhelow the re-
sale wvalue diven on vour personal record sheet.
Also note that if vou buy a unit at a price equal
to its resale value vour profit will be zero.

Your earnings will ke automatically entered in
vour record sheet at the close of each auction.
Earninds (profits) are accumulated over several
auctionss with vour total erofit at the end of
the experiment being the summation of vour prof-
its over all auctions. Buts, vou mar asks "How do
1 purchase this commodity™" Good Question. Press
BNEXT" for the answer.

Auction Resale Market
Number Value Price Profit

1 8.50
GO0
g.10
12,00
15,90
4,70
3,60
13,00 8'90l
12,70
10 9,50

3

wjim(Nim|n|BeWw

confirm

Total Profit:

This is the
starting price of
the auctions in
this example. It
will be $17.70 in
the experiment.

This is how vour screen will looK during the ex-
periment, The "clock" will act as an auctioneer.
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Notice that there is a dollar and cents amount
inside the clocKs, This is the price the auction
will start at, Every 2 seconds the price in the
clocK will decrease by $0.40,

Whern all of the rarticirpants are ready to bedin
the price in the "clocKk" will start to decrease.

Press "NEXT" to see what this will looKk liKe.

Auction Resale MarKet
Numtier Yalue Price Profit

1 8,50
B+0O
B.10
12,00
15.80
4,70
3.60
13.00 8.50

12.70
10 9,50

3

e |w

Lo~ m

confirm

Total Profit:

During the experiment the price in the ""clock'’
will chande automaticallvys vou will not have to
press any HKevs. Press "NEXT" to see what this
will looKk liKe.

Auction Resale MarKet
Number Value Price Profit

1 B.+30
5,00
8,10

12,00

15,90
4,70
3.60

13,00 7430

3

il

Do 3

12.70
10 9.50

Total Profit: confirm

If vou wish to buy the commodity at the price
shown inside the clock press the Key marKed "LAB"
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on vour Kevboard., Suppose vou wish to acceprt the
price which is showind ridght now. You would pPress
"LAB" to accomplish this. Press the Kev labeled
"LAB" now to see what happens.

Auction Resale MarKet
Number Value Price Profit

8.50
G.00
B.10
12,00
15,890
4,70
3.60
13.00 7.30

12,70 Please confirm bid.
9.30

Total Profit: confirm

Notice that upon accerting vou must then confirm
the contract to ensure that vou have not touched
the "LAB" Key by mistake., To confirm the con-
tract tarp the box under the clocK labeled "CON-
FIRM," The touch pranel acts like pressing a Kev.
IN THE ACTUAL EXPERIMENT YOU MUST DO THIS WITHIN
3 SECONDS OR THE CONTRACT WILL NOT BE CONFIRMED.
I+ vou fail to confirm vour clocK will continue
to run as befores and vou may "LAB" adain if no
one else has purchased the unit being auctioned,
Tap the confirm box now!

S0 IF S I 0% B I SN I

s I s I RN R 7 ]
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Auction Resale MarKet
Number Value Price Profit

8.50 7.30 1,20
G.00
B.10
12,00
15.90
4,70
3,60
13,00
12.70
9.50

Total Profit: 1,20 confirm

e W |

[ s N Y 3]

-
Ll
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THE FIRST PERSON TO BOTH "LAB" AND CONFIRM WILL
BE THE ONLY ONE TO RECEIVE THE UNIT BEING AUC-
TIONED! Notice that urpon confirmind the contract
vour personal record sheet was filled in for vou.
This will be done for vou at the close of each
auction period, If someone else confirms hefore
vous stars will be entered in the column labeled
"PROFIT+" The winnindg price will be entered un-
der "MARKET PRICE" so that vou will have a re-
cord of all winnind prices., Press "NEXT" to
continue.,

Let’'s rewview the important items., (1) You have an
eaunally 1liKely chance of receiving any resale
value between $0,10 and $16.,90 inclusive. (2)
¥Your bid MUST be less than or eaual to vour re-
sale value, (3) You may accerpt the "auctioneers"
offer by Pressing "LAB." (4) You must confirm
your accertance within 3 seconds to maKe a con-
tract. (3) The first person to "LAB" and confirm
will receive the unit. (6) The starting price in
each auctiown will he $17.70.

This is the end of the instructions. If vou wish
to do back and examine all the instructions ouver
adgain pPress “HELP", For a 9guicKk rewview press
"BACK". If vou wish to see the auction example
and the instructions which follow Ppress "LAB", If
vou feel vou now understand the instructions and
are prepared to proceed with the actual exrperi-
ment press "NEXT"., If vou have a <question that
vou feel was not adeauately answered by the in-
structions Please raise vyour hand and askK the
monitor before pProceeding, YOUR EARNINGS MAY
SUFFER IF YOU PROCEED INTO THE MARKETPLACE WITH-
OUT UNDERSTANDING THE INSTRUCTIONS!!

Are vou sure vou understand the instructions? You
w1ll not be able to return to them if vou Pro-
ceed bevond this pPoint. Press "NEXT" to continue
or "BACK" to return to the instructions.

After 10 Dutch auctions are completed, the following instructions are
administered.
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In the auction pPeriods to follow we will have
different bidding rules., The hidghest bidder will
still be the winnindg buver of the wunit of the
commodity for sales but the method of entering
bhids will change., We will use this new bidding
procedure for several more auctions. Profits ac-
cumulated using this new procedure will be added
to those vou have already accumulated,.

On vour screen vour table will adain be dis-
plaved, and vour <f(and evervone else’s) resale
values will still be selected by the same random
process, The method of fiduring vour pProfit will
also remain unchanded. If vou are the winning
hidder vou will still receive the difference be-
tween vour resale value and the Price vouw bid,

Auction Resale Market
Number Yalue Price Profit

1 8.50
1B6.50
0,10
4,40
8.70
12,890
16.60
0.30
3.80
10 4.20

[N

L1 P )

[{s Nl ENRE )]

Total Profite

Please enter vour bid for auction #1
(rounded automatically to the nearest .40)

(Press "NEXT" to enter it or edit to chande it)
This is how vour screen will look during the next
few aunction eeriods., Instead of the clocK ap-
pearing on vour screens vou will now see the
above messade., Your Job is to attemPt to PuUTI-
chase the unit of commodity in each auction b
entering a bid for it., The higdghest bidder in each
auction Period will bhe awarded the unit.
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Let’s d90 throudh a sample auction, Given vour
first period resale value of #%$8.,50 vou will en-
ter a bid for this wunit, Your bid will be auto-
matically rounded to the nearest multierle of $.40
below the value of $17.70, That iss vour bid will
be rounded to the nearest value such as 17.30;
16,90y 16+20s etc, SurProse vou wanted to bid 7,30
for this unmit., To do so tvpe in 7,30 and then
press "“NERXRT", Try this now, {(Use the "EDIT" Kev
if vou maKe a tvyPing error,)

FPlease enter vour bid for auction #1

(rounded automatically to the nearest ,40)

(Press "NEXT" to enter its or edit to chande it)
> 7,30

Press "NEXT" to confirm vour bid of 7.30 or Press
-BACK- to chande it.

Notice that urpon selectind a bid vou may either
confirm it or enter a new hbid: SuPPose vou are
satisfied with vour bid and wish to confirm it.
Press "NEXT" to do this.

Auction Resale Market
Number Value Price Profit

1 8,50 7.+30 1,20
16,50
0,10
4.40
8.70
12,90
16.60
0,30
3.80
10 4,20

Total Profit: 1,20

N]

g e |w

[Ea e RN R

If vou are the highest bidder vour personal re-
cord sheet will be filled in as above. As be-
forey if vou do not receive the units the column
labeled "PROFIT" will have stars entered into it.
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The winnindg bid will be disrplaved in the column
labeled "MARKET PRICE" so that vou will have a
record of all contract prices. In the event that
two or more bidders tie for the highest bid:
PLATO will select the winner at random,

lLet’s review the important items., (1) Your bid
MUST be less than or eaual to vour resale value,
(2) You can chande vour bid if vou have not vet
confirmed it already., (3) The hidghest bidder will
be the only Person to receive the unit.

This is the end of the instructions., If vou wish
to d0 bacK and examine all the instructions over
adain press "HELP". For a 9guicK review Press
"BACK",. If vou wish to see the auction examprle
and the instructions which follow Press "LAB", If
vou feel vou now understand the instructions and
are prerpared to pProceed with the actuwal exreri-
ment pPress “NEXT", If vou have a suestion that
vou feel was not adeauately answered by the in-
structions pPlease raise vour hand and askK the
moniter before proceeding. YOUR EARNINGS MAY
SUFFER IF YDU PROCEED INTO THE MARKETPLACE WITH-
OUT UNDERSTANDING THE INSTRUCTIONS!!

Are vou sure you understand the instructions? You
will wnot be able to return to them 1if vou pPro-
ceed bevond this point. Press "NEXT" to continue
or "BACK" to return to the instructions.
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NOTES

1. In correspondence (to Smith, February 21, 1980), Michael Darby has noted that,
based on his personal experience, the application of second-price procedures to ‘‘book
bids™" is standard practice in American auctions.
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2 In other words, for utility function (3.6) one has [ — yu(y)/u(y)] = (I — r,). On the
basis of this familiar equation, we have decided to label (3.6) as a constant relative risk-
averse utility function even though the interpretation does not follow when the utility
function is defined on income rather than terminal wealth.

3 The risk-neutral case will be referred to as the null or Vickrey hypothesis, whereas
strict risk aversion in which not all bidders are risk-neutral and E(r) < 1 will be called the
Ledyard hypothesis. Vickrey (1961) was well aware of what would be the effect of risk
aversion, but did not formally treat this case.

4. The limiting factor here was the response limits of the display screen in the Dutch
auction. The PLATO (or any other) system cannot display digital changes at anything
approaching a speed which is *‘fast’ by electronic standards. For example, a grid 10 times
as fine as our $.10 unit coupled with a 10-fold increase in clock speed would vastly exceed
the screen's display capability (as well as the discerning power of the eye and brain).

S, That is, if at time t seconds after the beginning of the auction the clock price reads
p,. then at time t + 2 seconds the clock will tick down to a price p,,, = p, — 9. If within
the next 2 seconds a subject depresses an ‘‘accept’ key and then is the first person to
touch the sensitive ““confirm” area on the computer screen, the clock stops at the price
p, - o, which is the winning bid.
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